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Simple model of the aging effect in heart interbeat time series
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In this work, we calculate the fractal dimension of heart interbeat time series of some healthy young and
elderly individuals. As has been found by means of other methods~detrended fluctuation and spectral analy-
ses!, we also find that interbeat series of healthy young subjects can be characterized by only one scaling
exponent and a crossover behavior in it is observed with aging. By means of a zoom over the hinges of the
crossover region, interesting effects of aging are presented. Our results with real interbeat time series are
reasonably reproduced by using a simple model based on combinations of noisy first-order autoregressive
series.
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I. INTRODUCTION

Heart rate dynamics is related to a large number of con
mechanisms. Heartbeat fluctuations are a very comp
manifestation of regulatory neuroautonomic feedback lo
@1#. In recent years, fluctuations of this physiological sign
have been studied by means of several methods derived
nonlinear dynamics and statistical physics, such as detren
fluctuation analysis~DFA! @2,3#, spectral analysis@4,5,15#,
entropy~approximate and sample! @6,7#, and correlation di-
mension@8#. In particular, fractal methods have been prov
to assess diverse characteristics and changes in hear
dynamics. These methods are strongly related to the fact
irregularity of the beat-to-beat time series for the case
healthy human heartbeat exhibits an absence of characte
time scales compatible with the concept of adaptability
derstood as a system’s repertoire of responses to env
mental stimuli. Heart rate variability has been proposed a
important marker of changes at the level of neuroautono
control @9,10#. Declination in the neuroautonomic control o
heart as a process occurring with aging and some heart
ure has been proposed@5,11#. An important question related
with aging is to quantify the loss of 1/f -like behavior~long-
range correlations! as a synonym of healthy heart variabili
towards degradated regimes~as that proposed by Iyenga
et al. @5# to model healthy very elderly subjects!. These au-
thors reported by means of DFA and spectral analysis
with aging a crossover phenomenon appears with respe
the former monofractal behavior corresponding to you
healthy individuals. This crossover behavior occurs in
interbeat scaling exponents, from a higher value ofa ~the
DFA exponent!, close to Brownian noise for fluctuations o
small time scales, to a lower value ofa ~close to white noise!
for large time scales. Iyengaret al. modeled this type of
crossover behavior by a simple stochastic model consis
in a noisy first-order autoregressive process that gives a
sonable fit with the fluctuations of interbeat interval for fo
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healthy elderly subjects~three of them the oldest in thei
sample, 76, 77, and 81 yr!. In the present paper, within th
spirit of the findings of Iyengaret al., we propose a method
to study the evolution of interbeat time series with agin
Our approach is based on the fractal analysis proposed
Higuchi @12# and we find the crossover phenomena asso
ated with aging and model them by means of combinati
of first-order autoregressive processes that mimic both
young 1/f -like behavior and the evolution of interbeat tim
series with aging. This paper is organized as follows. In S
II, we briefly introduce the Higuchi’s method and apply it
heart interbeat time series of two groups of individua
Healthy young and healthy elderly subjects. In Sec. III,
propose a numerical model to simulate the results obse
in the preceding section and finally, we give some conc
sions in Sec. IV.

II. FRACTAL APPROACH TO RR-TIME SERIES

As asserted by Goldbergeret al. @9#, the output of healthy
living systems, under certain parameter conditions, revea
type of complex variability associated with long-range~frac-
tal! correlations. Although nowadays it is recognized th
heart interbeat~RR-! time series display multifractal proper
ties @10#, in a first approximation one can study them b
means of a monofractal approach@3,5#. Higuchi @12# pro-
posed a technique to measure the fractal dimension w
gives stable indices even for small number of data. T
method consists in considering a finite set of data taken a
interval n1 ,n2 , . . . ,nN . From this series, we construct ne
time seriesnm

k , defined as

n~m!,n~m1k!,n~m12k!, . . . ,nS m1FN2k

k GkD
with m51,2,3, . . . ,k, ~1!

where@ # denotes Gauss’ notation, that is, the bigger integ
andm andk are integers that indicate the initial time and t
interval time, respectively. The length of the curvevm

k is
defined as
©2003 The American Physical Society01-1
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Lm~k!5
1

k F S (
i 51

[ ~N2m!/k] Un~m1 ik !

2n@m1~ i 21!k#U D N21

FN2m

k GkG ~2!

and the term (N21)/@(N2m)/k#k represents a normaliza
tion factor. Then, the length of the curve for the time interv
k is given by^L(k)&: the average value overk setsLm(k).
Finally, if ^L(k)&}k2D, then the curve is fractal with dimen
sionD. For the case of self-affine curves, this fractal dime
sion is related to the spectral exponentb by means ofb
5522D. If D is in the interval 1,D,2 then 1,b,3
@12#. Higuchi showed that this method provides an accur
estimation of the fractal dimension and has advantages
conventional methods. One important feature of this met
is that is very sensitive to changes in the self-organiza
~fractal! and it may reflect this fact through changes of t
fractal dimension over several scales, giving an import
tool to study the crossover phenomena.

We analyze beat-to-beat time series obtained from
healthy young subjects~age 21–31 yr!, eight healthy elderly
subjects~age 70–81 yr!, and one 58 yr old healthy individua
@13#. All records were sampled at 250 Hz under repose c
ditions. In the present study, we analyze only short segm
of ECG’s ~2 h!, equivalent to'8000 beats. By using the
Higuchi’s algorithm described above, we calculate the frac
dimension of all series. In Fig. 1, we present log-log plots
^L(k)& versusk for representative cases from each group;~a!
a healthy elderly subject,~b! a healthy young subject. In a
of the healthy young subject cases, a single fractal dimen
value is needed to fit the data, but in the cases of hea
elderly subjects, two fractal dimension values are requir
The fractal dimension associated with healthy young subj
lies within the range ofD'1.87460.0213 ~fractal dimen-

FIG. 1. Log-log plot of^L(k)& vs k for representative cases o
~a! healthy elderly and~b! healthy young subjects.
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sion value6standard deviation!, which corresponds to a
spectral exponentb'1.26, within the range of 1/f -like be-
havior. This monofractal behavior for healthy young ind
viduals has been reported by means of other methods suc
DFA and power spectral analysis@3,5#. On the other hand
healthy elderly individuals present a clear crossover phen
enon, which has been reported by means of DFA analysis@5#.
In this case we find two regions: over short scales (k,kC
'9) fractal dimension is in the rangeDS'1.519 59
60.0841, whereas for lagsk.kC'9, DL'1.826 57
60.0931. By using Student’st-test, we find that there is a
highly significant difference betweenDS andDL for elderly
subjects (P50.0001), but not for the young (P50.137). We
present an additional numerical study of the crossover p
nomenon observed in the fractal dimension. Although app
ently the two-segment curve drawn in the case presente
Fig. 1~a! satisfactorily fit the log(k) versus loĝL(k)& data,
these plots show a round corner around a certainkc . Since
the fractal dimensionD is defined by minus the slope of th
straight line fitted to the loĝL(k)& versus log(k) points, we
assume that the fractal dimension can be written as@12#

D~k!52
d ln^L~k!&

d ln~k!
. ~3!

In Fig. 2, the behavior ofD(k) with respect to log2(k) is
plotted @14#. The two dotted horizontal lines superposed
the figure indicate the values ofDL andDS , which are ob-
tained by fitting the two-segment curve showed in Fig. 1~a!.
In the case of healthy elderly subjects@Fig. 2~c!#, clearly,
D(k) gradually becomes larger ask increases, and then satu
rates atD'1.82, a small increase is observed at largek. It is
noteworthy thatD(k) does not discontinuously change fro
DS to DL as a step function, but it shows a gradual increa
ask increases. It is remarkable that in the planeD(k) versus
log2k, as can be seen in Fig. 2, the aging effect over

FIG. 2. Plot ofD(k) vs log2k, in the region of short scales fo
three representative cases: healthy young, healthy adult, and he
elderly subjects. In this region, the aging effect is quite evident
1-2
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beat-to-beat time series is quite evident. In this figure,
can observe how for a healthy young individual@age 29 yr,
Fig. 2~a!# the crossover follows a very soft small-slope pa
~this path smoothly tends toD'1.9), while for a healthy
adult person@age 58 yr, Fig. 2~b!# the transition is more
remarkable, but less dramatic than in the case of a hea
elderly person@age 81 yr, Fig. 2~c!#. We believe that in the
planeD(k) versus log2(k), one can observe the aging effe
over RR-time series in a very clear fashion and apparent
correlation between the vertical deviations ofD(k) and the
age is observed.

III. THE AUTOREGRESSIVE MODEL

A simple model of 1/f noise is a stochastic process com
posed of a superposition of many modes with exponen
decay associated with different time constants@16#. One time
constant can be obtained from a single first-order autoreg
sive process,

Xt1t115aXt2t1« t2t , ~4!

wheree is a Gaussian distributed random variable anda is a
coefficient that is related to correlations of events. We
interested in the case where 0<a<1. Correlations between
different events can be calculated asC(t)5Aat5Aet ln a,
with A a constant. Time constants are related to the corr
tion function as the characteristic time in which the corre
tion has decayed 1/e. Thus, the autocorrelation function for
stochastic process with a single characteristic time isC(t)
5Ae2t/to, with t0521/lna, clearly t0 goes from zero to
infinite while a varies from 0 to 1. By using the Weine
Khinchine theorem@17# it is easy to show that the powe
spectrum of such a process is given by

s~ f !5
4At0

11~2p f t0!2
. ~5!

This spectrum shows two different zones; for low freque
cies (f !1/2pt0) it is constant with a white noise behavio
and for high frequencies (f @1/2pt0) is a Brownian motion.
It has been proposed that a linear superposition of m
independent characteristic times with hyperbolic distribut
leads to 1/f noise in a certain region@17#. The sum of many
power spectra given by singlet08s is

S~ f !5E
0

`

dt0s~ f !P~t0!, ~6!

where P(t0) is the characteristic-time distribution of th
form

P~t0!5H c/t0 if 0 ,t1<t0<t2

0 otherwise
~7!

with c a normalization constant andt1 , t2 being the lower
and upper time interval limits, respectively. The integrati
of Eq. ~6! leads to
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S~ f !5
2Ac

p f
@arctan~2pt2f !2arctan~2pt1f !#. ~8!

This expression can be separated in three regions;

S~ f !'5
4AcDt, 0, f !

1

2pt2
!

1

2pt1

Ac

f
,

1

2pt2
! f !

1

2pt1

AcDt

p2t1t2f 2
,

1

2pt2
!

1

2pt1
! f ,

~9!

whereDt5t22t1. In the first region~very low frequencies!
the process is white noise type, with a flat power spectru
in the second region (1/2pt2! f !1/2pt1) the process is 1/f
type; and in the third region~very high frequencies! it is
Brownian type.

As was reported by Iyengaret al. @5#, healthy-elderly
heart rate dynamics can be resembled by a single first-o
autoregressive relation with a single characteristic time.
are interested in recuperating healthy heart rate dynamics
how it evolves to senescence. We use the simple mode
superposition of many modes with exponential decay suc
described above. The repertoire of characteristic times is
tained from the variation of the parametera in the interval
0<a<1. In case~i!, we take a linear superposition of 1
time constants of the first-order autoregressive model gi
by Eq. ~4!, chosen equally spaced in the interval@a1 ,a2#
5@0.15,0.95# ~note that time constants are not equa
spaced!. In case~ii !, we reduce the interval of parametera
~equally spaced! to @a1 ,a2#5@0.65,0.95#, and take only nine
time constants to perform the superposition. In case~iii !, we
consider only six time constants from the interval@a1 ,a2#
5@0.85,0.95# to perform the superposition. The Higuch
analysis of cases~i! and ~iii ! and their comparison with rea
data is presented in Fig. 3. In this figure, one can observe
a single fractal dimension can be associated with the si
lated case of a healthy young and a good agreement is
served with real data. Also, in the simulated case of a hea
elderly subject, we obtain a crossover as is observed in
data. It is interesting to note that in the case of the simulat
of a healthy elderly subject, the left region of the separat
generated by the crossover is Brownian type and a g
agreement is observed with real data. It is important to n
that the crossover point is given atkc'9 in both cases. By
performing a zoom on the crossover point in simulated ca
~Fig. 4!, we roughly recover the behavior reported in re
cases~see Fig. 2!. In the case of healthy-young-simulate
behavior, a very soft path is observed. As the interval and
number of time constants are reduced, a gradual decreas
a nonstep transition are observed around the crossover p

IV. CONCLUSIONS

By means of the Higuchi’s fractal approach, we find th
RR-time series of young healthy individuals have a reas
1-3
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able monofractal behavior with long-range correlations. T
behavior is usually taken as a sign of cardiac health tha
gradually lost with aging. This is apparently express
through the appearance of the crossover phenomena in
RR-time series. We also observe this feature in the fra
dimension. When we apply a zoom over the hinges co
sponding to the crossover points, we find that the size of
transition ofD from the region of low lags to that of greate
lags can work, probably, as an auxiliary biomarker of phy
ological aging. Some of these properties of actual RR-ti
series are resembled by means of a simple statistical m

FIG. 3. Log-log plot of ^L(k)& vs k. A comparison between
simulation and real data for healthy elderly and healthy young p
sons is depicted.
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based on first-order autoregressive processes. This sim
model suggests to consider aging as a gradual loss of h
adaptability understood as a system’s repertoire of respo
to environmental stimuli. This is expressed as the diminut
of the number of characteristic times needed to simulate
RR-time series and also as the diminution of thea-coefficient
interval.
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